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The approximate recurrence of the initial state, observed recently in the numerical 
solution of Vlasov’s equation by a fmite-difference Eulerian model, is shown to be a 
property of three independent numerical methods. Some of the methods have exponen- 
tially growing modes (Dawson’s beaming instabililies), and some others do not. The 
recurrence is in fact a manifestation of the finite velocity resolution of the numerical 
methods-a property which is independent of the approximation of a plasma by a 
finite number of electron beams. The recurrence is shown explicitly in the numerical 
simulation of Landau damping by three different methods: Fourier-Hermite, the 
recent variational method of Lewis, and the Eulerian finite-difference method. 

1. JNTRODUCTION 

An asymptotic expression for the small perturbation of an equilibrium 
Maxwellian electron distribution obeying Vlasov’s equation was obtained by 
Landau [l] in the form f(x, 27, f) - exp(ikx) exp(-&Et). This means that for the 
linearized Vlasov equation the distribution function develops asymptotically a 
velocity frequency kt, that grows beyond bound in time. The development of higher 
and higher frequencies in velocity space, often designated as the development of 
fine structures in the distribution, creates a fundamental difficulty for the numerical 
solution of Vlasov’s equation which has not been surmounted. Because all 
numerical methods have a finite velocity resolution, jt is clear that the simulations 
of the linear Vlasov equation will cease to be valid when the distribution reaches a 
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velocity frequency equal to the maximum frequency that can be represented. by the 
numerical scheme. The aim of this paper is to show that most of the stamkrd 
numerical methods fail in precisely the same qualitative way: after the upper :ime 
limit for the validity of the numerical simulation is reached, an approximate 
recurrence of the initial state takes place, and thereafter the computation has the 
same qualitative behavior as that observed after the initial time.l fn some recent 
work [Z-4], this recurrence of the initial state has been discussed in connection 
with the dispersion relation for a finite number of electron beams with a Maxwel?lesr 
envelope, originally introduced by Dawson [5]. In this paper, we wish to emphasize 
that the recurrence is due to the finite velocity resohttion of the numerical methods. 
and that it does not require that the methods have dispersion relations equal or 
similar to Dawson’s. This main conclusion is proved by showing the recurTecce of 
the initial state obtained in the simulation of Landau damping by the Fourier- 

ermite method, whose dispersion equation has ~ZQ growing modes [a]. This 
recurrence, observed also with a finite-difference method without growing modes, is 
qualitatively similar (in a sense to be made precise later) to those obtained with the 
methods used by Lewis [2], Denavit [3], and Bra&bill [ii]? whose dispersion 
relations have growing modes because they are identical to the one obtained b> 
Dawson for a finite number of beams [5]. Therefore, as all these methods show the 
recurrenze of the initial state in the same qualitative way, this recurrence is i&e-, 
pendent of the existence of growing modes (beaming instabiiit iesb @P of t’ne approxi~. , 
marion of a plasma by a finite number of beams. 

In Section 2, we review briefly the results obtained by Gram and Feix [6j for the 
dispersion relalion of the Fourier-Hermite method, and also those obtained by 
Lewis [2] in the numerical analysis of Dawson’s dispersion reiation. 

HE Section 3, we give the results of the numerical experiments on Haildan damping 
and their interpretation. The numerical experiments were carried out using the 
Fourier-Hermite method [6-g], and a finite-difference Eule:ian method [!9: ICI]. 
This method has been used to simulate Landau damping by a plasma model without 
growing modes (beaming instabilities); in this case, rhe electric field behaves 
qualitatively in the same way as that obtained by the Fourier-Hermite me&o& 
The finite-difference program was then modified to simulate Landau damping by a 
multibeam model (a numerical method is said to approximate a pIasma by a 
muitibeam model if its dispersion relation is the same as Dawson’s); in thi.s zas?, 
the time behavior of the electric field is qualitatively the same as :hat obtained ky 
Lewis [2]. In this way, we obtain a precise description of a plasma modeled by a 
finite number of equally-spaced beams with a Maxweilian envelope (i.e., Davison’s 
model), which allows us to separate clearly the recurrence of :he kitiai 

1 As far as we know, the particle simulation method is the only exisikg mekod which does no: 
show the recurrence cf the initial state (see Ref. [3]). 
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state (common to all the numerical methods discussed) from the effects due to the 
beaming instabilities (which are characteristic only of multibeam models). This 
description is consistent with the numerical analysis of Dawson’s dispersion 
equation carried out by Lewis [2]. A clear understanding of these numerical effects 
is essential for the proper interpretation of the computations of nonlinear large- 
amplitude plasma oscillations, a problem which is the subject of a forthcoming 
paper. 

2. DISPERSION EQUATIONS OF NUMERICAL METHODS FOR VLASOV'S EQUATION 

Here we review and compare briefly the results obtained for the dispersion 
equation of the Fourier-Her-mite method [6], and those obtained for Dawson’s 
dispersion equation [2]; it is recalled that multibeam numerical methods [2-41 
have dispersion equations identical to Dawson’s. A clear understanding of these 
results is essential for the proper interpretation of the numerical experiments to 
follow. 

In the Fourier-Hermite method for the solution of the linearized Vlasov equation 
(the notations and units of Refs. [7] and [8] are used here) 

aj(x, c, t) 
at 

+ u g - E(x, t) 2 = 0, 
, 

6E -=I-..- 
ax s m f h, --m 

(1) 

where fO is the equilibrium electron distribution and E the electric field, the per- 
turbed distribution is expanded as follows: 

f(x, D, t) M i exp(iXcx) F exp(-+v2) h,(0) Z,,,,(t), 
??.=-.I >lL=O 

where h,, are the orthonormal Hermite polynomials. The unknown time-dependent 
coefficients Z&t) corresponding to the fundamental Fourier mode, exp(ikx), 
satisfy the following linear system of homogeneous differential equations [7, Eq. 
(WI: 

dZ/dt = &Z(t), (3) 



where the vector Z and the matrix A!’ are given by 

As the system (3) is linear, its solutions are expressed in the form exp(k&j, ~+ere 
the w’s are the roots of the dispersion equation 

Grant and Feix [6] have proved that all roots ~ci of the discersioa equation (5) 
LZW rrtll; further, it can also be shown that all the roots occur in pairs of equaI 
magnitude and opposite signs when M + 1 (the number of terms in the Hermite 
expansion) is even; if M + 1 is odd there is also one root OJ = CI. fn other words, 
all the normal. modes of the Fourier-Hermite method are standing modes-they 
do not damp or grow. The general solution of (3) Is written in scalar form as foO:o:ws 

Z,,l(t) = g  Cmi exp(iwJ), 

j=O 

where the Cnj are (A4 + 1)2 constant coeiiicients to be determined. As is known 
from the theory of homogeneous systems of ordinary differentiai equations with 
constant coefficients [ll], M” + M of the coefkients C,,? are determined by 
requiring that the expressions (6) satisfy the system (3); the remaining M +- 1 
arbitrary constants C,,? are required to satisfy the initial conditions. It is recakd 
here that the most important physical quantity, the electric field, is proportional to 
the coefficient Zol(t) ]7, 81. The implications of the result (6) for the proper inter- 
pretation of the numerical experiments will be discussed in the next section. 

Lewis [2] has carried out a detailed study of Dawson’s dispersion equatior:, 



38 CANOSA, GAZDAG AND FROMM 

where w0 = (4rne@/1z) ljz is the plasma frequency, and nj and Llj are the electron 
density and velocity of the jth beam. His results are compared now with those 
obtained for the dispersion equation of the Fourier-Hermite method. Dawson’s dis- 
persion equation has real roots (see Fig. l(b) of Ref. [2]) which must occur in 
pairs of equal magnitude and opposite sign, as one can see by inspection of Eq. (7) 
assuming a Maxwellian or more generally a symmetric beam distribution; it is 
recalled that this result is also true for the Fourier-Hermite dispersion equation. 
We speculate that Dawson’s and the Fourier-Hermite dispersion equations have 
corresponding real roots which are quite close to each other in magnitude. In 
addition, Dawson’s dispersion equation has complex conjugate roots whose real 
parts have a magnitude (giving the oscillation frequency) which is much smaller 
than the magnitude of the largest real roots (see Fig. l(b) of Ref. [2]). These 
exponentially growing modes give rise to the so-called beaming or multistream 
instability. It is important to stress here that, because the oscillation frequency of 
the growing modes is much smaller than the largest frequency of the standing 
modes, the growth of the beaming instabilities will be appreciable only in a time 
scale which is long compared with the period of the fastest oscillations. 

3. LANDAU DAMPING, RECURRENCE, AND BEAMING INSTABILITIES 

The approximate recurrence of the initial state is first shown (see Fig. 1) in a 
computation of Landau damping by the Fourier-Hermite method [6-81, and by a 
Unite-difference Eulerian method [IO]. The wave number (in units of the reciprocal 
of the Debye length) is k = 0.5, and the number of terms kept in the Hermite 
expansion was 100, the same as in the paper of Grant and Feix [6]; this computation 
was also carried out by Armstrong [7] and by Lewis [2]. 

The computation of Grant and Feix (see Fig. 2 of Ref. [6]) shows the proper 
Landau damping up to a time t = 20; afterwards, a gradual deviation from the 
correct Landau slope is observed. They state that this gradual deviation is caused 
by the truncation of the Hermite expansion at 100 terms. In order to explain this, 
they point out that the maximum velocity frequency that can be represented by a 
Hermite expansion with N terms is N1j2, because the asymptotic behavior of the 
Hermite polynomials for large N is &(zI) - sin(N%); using this in conjunction 
with Landau’s result f(x, a, t) - exp(ik,x) exp(--ikvr), they obtain an estimate 
for the upper time limit of validity of the Fourier-Hermite method, T = NWcl, 
which for the computation shown in Fig. l(a) gives T = 20. In contrast with the 
Grant and Feix results, our computation is in excellent agreement with Landau’s 
theory up to t .w 30, as can be seen by inspection of Fig. l(a). Actually, the oscil- 
lation frequency and damping rate obtained from the numerical output averaged 
over the maxima occurring from t = 4.73 to 29.14 [3rd and 14th maxima in Fig. 
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l(a)] are 1.4155 w,, and 0.15334 w,, , to be compared with the exact values obtained 
from Landau‘s dispersion equation, 1.4156 w,, and 0.15336 w0 [IZ]. The numerical 
integration of the system of equations (3) was carried out by a fourth-order 
Runge-Kutta method with a time step At = 0.02. The initiai conditions used were 
the same as armstrong’s, i.e., Z,,(O) = constant, Z,,,,(O) = 0, 1~2 i 0, correspond- 
ing to a Maxwellian velocity distribution of the monochromatic axp(ikx) itlitial 
perturbation. 

We must conclude that the gradual deviation from the correct behavior in the 
Grant and Feix computation during the interval 20 < r < 30 can oniy be due to 
numerical inaccuracies. At about t = 32, the computation in Fig. l(a) shows in 
Lewis words [2] an “explosive deviation” from the correct continuous results. Isbzis 
is the approximate recurrence of the initial state, and is a characteristic not only of 
the variational method of Lewis (see Fig. 4(aj) or of the distribution pushing 
method used by Brackbill and others [4, 135, but is common to most standard 
methods of solution of the collisionless Vlasov equation because they ali have a 
fin&e velocity resolution (see, however, footnote I). It is of interest to note here that 
after the recurrence, the damping of the electric held is much smaller than tie 
initial Landau damping, but the oscillation frequency is cjaite close to Landa-u’s 
frequency. In a previous paper where the electric field performed steady-state 
oscillations (see Fig. 2 of Ref. [lo]), the recurrence was much more striking than 
here, because after the explosive deviation the steady-state oscillations were almost 
identical to those observed after the initial time. 

The computation shown in Fig. l(a) is proof that the explosive deviation from :he 
correct Landau behavior has nothing to do with the beaming instability, This is. 
because the dispersion equation for the Fourier-Hermite method [see Eqs. (5) 
and (6)] has only real roots, i.e., the normal modes of the Fourier-Hermire method 
are standing m’odes-there are 170 growing modes. 

What is fascinating about Landau’s problem is that in the Fourier-Herm,ite 
computation, the electric field (which is proportional to Z,, ) see Eq. (6) with ~1 = 0) 
oscillates with the proper frequency and damping rate predicted by Landau for a 
nondissipative system with an infinite number of degrees 3: freedom, the correct 
damping being obtained by the “phase-mixing” of the hf + I real frequencies wj 
A more complete discussion of this feature is given by Grant and Feix [6]. 

In Fig. l(b) we show the recurrence of the initial state obtained in the simulation 
of Landau damping by a finite-difference Eulerian method [IO]. The behavior of the 
electric field and its recurrence are similar in every respect to those observed \G.th 
the Fourier-Hermite method. It should be realized that in this smite-di~~re~ce 
computation, the equilibrium Maxwellian distribution is ~?a: approximated by 
a finite number of S-function beams with a Maxwellian envelope; rather, at nzz.:~ 
point in velocity space the derivative of the distribution is defined smoothly by 
using fimte-difference expressions obtained from the values of the distribution 
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given at the neighboring grid points. It is for this reason that the finite-difference 
computation shown in Fig. l(b) is not subject to beaming instabilities, and is 
therefore similar in every respect to the Fourier-Hermite computation. For a 
velocity mesh width Au, the highest velocity frequency that can be represented is 
n-/Au; using this in conjunction with Landau’s result 

f(x, v, t) - exp(ikx) exp(-&vt), 

we get the estimate for the upper time limit of validity of a finite-difference computa- 
tion, T = n-/k Av [9, IO]. It should be stressed that these estimates are obtained 
using Landau’s linear result for the asymptotic electron distribution and, therefore, 
are strictly valid only for the computation of the electron distribution in Landau’s 
model problem. However, the computations in Fig. 1 show that the electric fields 

OLi 
0 8 I6 24 32 40 48 56 64 72 80 

TIME lW:‘l 

(01 

0 20 40 60 80 100 120 140 160 180 200 
TIME lW;‘i 

(bj 

FIG. 1. The approximate recurrence of the initial state without the multibeam instability 
for k = 0.5. (a) Fourier-Hermite method with 100 terms; (b) Finite-difference method with 
Au = (q'20)vt. 

are obtained correctly during a time interval longer than T; for the finite-difference 
computations, the superperiod (time elapsed between two successive recurrences of 
the electric field) is almost 2T. This property of Vlasov’s equation can be understood 
by inspection of Fig. 2 and 3. In Fig. 2, we plot at successive instants of time the 
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FIG. 2. Time sequence of the velocity distribution fI(r, t) defined by Eq. (8). Finite-difference 
method with k = 0.5, and Au = (I;L?) ci Time in units of ,;I. 
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FIG. 3. Time sequence of the velocity spectrum / G(I, , . fj defined by Eq. (9). Finite-dikence 
method with k = 0.5, and Av = (l,jlZ) ~1~. Time in units of SO;‘. 

real part of the first Fourier component of the perturbed electron distribution 
obeying Eq. (13, i.e., 

where L is the fundamental domain length. The parameters characterizing ii7is 
finite-difference computation are k = 0.5 and 80 = (l/12) E+ I where ct is the 
thermal velocity. The initial perturbation f(x, C, G) is spatiaky monochromatic 
exp(ikx) and has a Maxwellian distribution (see Fig. 2 for f = 0). As time advances, 
the distribution (8) develops the fine structures predicted by Landau’s theory; 
finally, at f e T = n/k AL> = 75.4, the maximum fine structure (or shortest 
wavelength in velocity space) that can be represented by the finite-difference grid 
is reached, and thereafter the numerical simuiation “unfolds” the distribution 
which becomes progressively smoother until the time t w 2T = 150.8, at whisk an 
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approximate recurrence of the initial state (the Maxwellian distribution) takes 
place, and the development of the fine structures starts once again. 

In Fig. 3, we show the absolute value of the Fourier velocity spectrum of the 
time-dependent distribution given by Eq. (8), i.e., 

G(Z, , t) = sgmax fi(v, t) exp(--iZ,c) dzq, I,=s”,, s = O,l, 2 )...) (9) 
-2'max urnax 

where Urnax is defined by the velocity grid spacing as umax = N Au, and 2N + 1 
is the number of grid points. It should be recalled [7, 81 that the electric field is at 
all times proportional to the amplitude of the Maxwellian part of the distribution 
fr(~, t), which in turn is proportional to the spectrum amplitude for 1, = 0. 
Because the initial perturbation is Maxwellian, at t = 0 the spectrum amplitude 
for 1, = 0 is largest. As time advances, the narrow velocity spectrum moves to the 
right in the manner of a travelling wave. When the spectrum reaches the maximum 
I, available in the computation grid (E, = 63 in Fig. 3) at t = T = z-/k Av = 75.4, 
a reflection takes place and thereafter the spectrum travels to the left, till at t cs 2T 
it reaches again the left “wall” (IS = 0) and the approximate recurrence takes place, 
at which time the electric field once again reaches a value of the same order as the 
initial value. 

It should now be perfectly clear that the sudden deviation from the correct 
behavior shown in Fig. 1 is not a numerical instability, i.e., the solution of the 
system of equations (3) can be obtained numerically with arbitrary accuracy 
during all the time interual shown in Fig. l(a). Of course, Eq. (3) represent a non- 
dissipative system with a finite number of degrees of freedom, and cannot approxi- 
mate indefinitely a nondissipative system with an infinite number of degrees of 
freedom (the collisionless plasma modelled by Vlasov’s equation), where the 
damping is due to the dispersal of the electrostatic energy initially concentrated in 
one degree of freedom into an infinite number of degrees of freedom [14]. 

A. Effects of the Multistream Instability 

The computations shown in Fig. 1 indicate that the recurrences of the initial 
state, taking place roughly at 2T w  2N1j2k-l (Fourier-Hermite method) and 
2T ,* 2r(k Au)-l (finite-difference method), are only approximate. Here we are 
not interested in more accurate recurrences which might possibly take place after 
periods of time orders of magnitude higher than the above T [15]. It is now shown 
that, at least for a sufficiently short time, the recurrences are not prevented by the 
multistream instability, but that this has only a certain quantitative effect on them. 

After the original theoretical discussion of Dawson on the Landau damping of 
a finite number of electron beams [5], Lewis has recently carried out a numerical 
analysis of Dawson’s dispersion equation, which is also the dispersion equation 
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for his variational method of solution of Vlasov’s equation 21. We now dzscribe 2 
numerical experiment carried out with our finite-difference Eulerian method in 
which the plasma is approximated by a finite number of beams with a MaxweZm 
envelope. ‘This is realized numerically by using the following initial perturbation 
in the distribution 

nb = -Nb , -Nb + l,..., Nb ) 
$0) 

12 = --4Nb , --4N, + I,..., 4135 , 

where AC is the grid spacing. Thus, we simulate 2121, + 1 approximate 6-function 
beams over a velocity grid having four times as many grid points. In other words, 
for each grid point with an electron beam there are six grid points (three to the left 
and three to the right) in which the distribution is set equal to zero. The aim of this 
computation was to simulate Dawson’s model, and therefore, to obtain a Landau- 
damped electric field in qualitative agreement with that observed in LevCs’ simula- 
tion The results of Lewis’ computation and of our own are given in Fig. 4, and 

show a complete qualitative agreement with each other: as expected. Because in 

a41 I 
0 12.6 25 1 77.7 

TIME iW,-‘1 

(II! 

(b! 

FIG. 4. The approximate recurrence of the initial state with the multibeam inrtabifity prescn:, 
k = 0.5. (a) Variational method of Lewis [Z]; (b) Finite-difference method wixh ilo = (a/80) t‘, ~ 
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these computations the plasma is approximated by a multibeam model, their 
dispersion equations have exponentially growing modes. The effect of these multi- 
stream instabilities is to increase at the recurrence the magnitude of the electric 
field relative to the initial value. Even after the first recurrence, the multistream 
instability is not strong enough to prevent the damping of the electric field which 
results from the phase mixing of all the modes of the dispersion equation. A. com- 
parison of the computations shown in Fig. l(b) and 4(b) indicates quite clearly that, 
other than the increase of the electric field at each recurrence, the qualitative effects 
of the multistream instability on the electric field are small. More explicitly, the 
“superperiod” (time elapsed between two recurrences), the electric field oscillation 
frequency and its damping rate are almost identical in the computations shown in 
Fig. l(b) and 4(b) during the time interval 0 < t < 4T. This is in agreement with 
Dawson’s and Lewis’ analyses, which show that the time scale for the growth of the 
electric field due to the multistream instability is large compared to the Landau 
oscillation frequency, Of course, after a time sufficiently long for several recurrences 
to have taken place, the multistream instability will finally dominate the damping 
due to the phase-mixing of the modes. 

4. CONCLUSION 

We have established that when the linear Vlasov equation is solved numerically 
by a method without growing modes (beaming instablities), the approximate 
recurrence of the initial state is related to the fact that the numerical approximation 
represents a non-dissipative dynamical system with a finite number of degrees of 
freedom. That these systems should have recurrence properties is physically 
reasonable, because sooner or later their characteristic standing modes might again 
be in almost the same phase as that corresponding to the initial condition. A precise 
analogue of this focusing in time of the standing modes of the truncated Vlasov’s 
equation is the focusing in space of the solitons observed in the numerical solution 
of the Korteweg-de Vries equation with periodic boundary conditions, which also 
leads to the approximate recurrence of the initial condition [16]. It should be noted 
that, just as the (truncated) Fourier-Hermite approximation to Vlasov’s equation, 
the Korteweg-de Vries equation represents also a nondissipative system where most 
of the energy seems to be concentrated in a finite number of degrees of freedom, 
i.e., the eight solitons of the Zabusky and Kruskal computation [16]. 
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